Robust sparse Bayesian infinite factor models
نویسندگان
چکیده
Most of previous works and applications Bayesian factor model have assumed the normal likelihood regardless its validity. We propose a for heavy-tailed high-dimensional data based on multivariate Student-t to obtain better covariance estimation. use multiplicative gamma process shrinkage prior number adaptation scheme proposed in Bhattacharya Dunson [Biometrika 98(2):291–306, 2011]. Since naive Gibbs sampler suffers from slow mixing, we Markov Chain Monte Carlo algorithm where fast mixing Hamiltonian is exploited some parameters model. Simulation results illustrate gain performance estimation data. also provide theoretical result that posterior weakly consistent under reasonable conditions. conclude paper with application breast cancer metastasis prediction given DNA signature cells.
منابع مشابه
Sparse Bayesian infinite factor models.
We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent factor models. We propose a multiplicative gamma process shrinkage prior on the factor loadings which allows introduction of infinitely many factors, with the loadings increasingly shrunk towards zero as the column index increases. We use our prior on a parameter-expanded loading matrix to avoid the order...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولPosterior Contraction in Sparse Bayesian Factor Models for Massive Covariance
Sparse Bayesian factor models are routinely implemented for parsimonious dependence modeling and dimensionality reduction in highdimensional applications. We provide theoretical understanding of such Bayesian procedures in terms of posterior convergence rates in inferring high-dimensional covariance matrices where the dimension can be potentially larger than the sample size. Under relevant spar...
متن کاملBayesian Learning in Sparse Graphical Factor Models via Annealed Entropy
We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2022
ISSN: ['0943-4062', '1613-9658']
DOI: https://doi.org/10.1007/s00180-022-01208-5